Even though this rare earth element and its myriad of uses has yet to become a household name, does dysprosium truly deserve its reputation as the hard to get at rare earth element?
By: Ringo Bones
Given that this rare earth element is never found free in nature, the derivation of its name – dysprositos, Greek for hard to get at – is probably an apt name of its chemical properties that eludes dysprosium’s purification to six-nines level (99.9999% purity) until the advent of modern ion-exchange and solvent-extraction procedures of the mid to late 1950s. Dysprosium, atomic number 66, chemical symbol Dy, is a member of the lanthanide – or rare earth series of elements – which also includes such rare earth metals as cerium, lanthanum and yttrium. Dysprosium has a melting point of about 1,500 degree Celsius and a boiling point of 2,300 degree Celsius.
The discovery of dysprosium was credited to the French chemist Paul Émil Lecoq de Boisbaudran back in 1886. Although Georges Urbain later obtained a reasonably pure sample of the metal in 1906, the free element has never been chemically isolated until the advent of modern ion-exchange and solvent-extraction techniques of the mid to late 1950s.
Dysprosium occurs naturally in minerals usually found in granite or pegmatite veins, such as euxenite, gadolinite, samarskite and xenotime. Dysprosium is also found among the products of nuclear-fission reactions. Dysprosium is separated from other rare earth metals which it occurs via ion-exchange and solvent-extraction methods.
Dysprosium is used primarily in nuclear reactor control rods and its other chief practical use is in nuclear reactors, where it serves as a nuclear “poison” – that is, it is employed as a neutron-eating material to keep the neutron-spawning atomic chain reaction from getting out of hand and also in magnetic alloys.
Dysprosium has a valence of +3 and forms yellow-green colored compounds. Dysprosium is ferromagnetic below – 123 degrees Celsius. Just like pure gallium when chilled with liquid nitrogen, dysprosium will stick to an ordinary bar magnet. And at liquid helium temperatures, dysprosium becomes a superconductor.
Dysprosium’s high magnetic susceptibility makes it useful for data storage devices and as a component of Terfenol-D – a powerful rare earth magnet first used in US Navy sonar systems. Soluble dysprosium salts are mildly toxic while the insoluble salts are considered non-toxic.
A blog about the rare earth group of elements and on how these elements became indispensable to our 21st Century information driven society.
Showing posts with label Rare Earth Metals. Show all posts
Showing posts with label Rare Earth Metals. Show all posts
Wednesday, January 12, 2011
Thursday, December 23, 2010
Rare Earth Metals: Ideal Optically Pumped Lasing Material?
Given that rare earth metals based optically pumped lasers are widely used since the 1960s and until now proof that rare earth metals are an ideal optically pumped lasing material?
By: Ringo Bones
In the 1960s till now, optically pumped lasers produce higher outputs – in terms of both energy and peak power – than those in the discharge excited gas lasers or electron injection lasers or semiconductor lasers. Even as far back as 1964, optically pumped lasers were already capable of producing pulse energies of 2,000-joules and peak powers of 5-gigawatts or 5-billion watts. Optically pumped lasers are still the widely used type both in practical development and in laboratory research. In optically pumped lasers, the atoms in the laser material are indirectly excited by light from an intense light source – such as a xenon flash lamp – that is often coiled, snake-like, around the material. Like the other types of lasers, optically pumped lasers may either operate in a pulsed or continuous wave. A pulsed laser produces a burst of radiation that lasts about a thousandth – or in some cases, a few billionths – of a second. In a continuous-wave laser, the intensity achieved is much less, but the laser beam comes out in a continuous stream.
Although there are perhaps 20 or so optically pumped solid-state laser materials, like those calcium chloride crystals doped with samarium that can produce laser beams intense enough to burn metal or bounce off the Moon, 4 are the most dominant: ruby, neodymium doped glass, neodymium-doped calcium tungstate, and dysprosium-doped calcium fluoride. The ruby and glass lasers normally operate at room temperatures, and in the pulse mode. The neodymium-doped calcium tungstate and dysprosium-doped calcium fluoride can readily be operated to emit continuous waves; however, the dysprosium-doped calcium fluoride must be cooled to cryogenic temperatures about that of liquid air.
There is even a class of organic liquids, such as nitrobenzene, that exhibits simulated Raman emission when optically pumped by another laser. A plastic laser, developed in 1963, uses europium chelates dissolved in a clear plastic fiber as the lasing material to produce crimson pulses when excited by ultraviolet light. Lasers of this sort are also used as a light source in Raman spectroscopy – a spectroscopic technique of great value in organic chemistry based on an effect discovered by the Indian physicist Sir Chandrasekhara Venkata Raman – and has greatly facilitated studies in that field.
Ever since as far back as the 1960s, medical-grade optically pumped lasers were already used in eye surgery where it is used to treat retinal detachment especially if the retina – the light-sensitive tissue at the back of the eye tears loose from the eyeball – blindness may result. When a laser beam is focused through the lens of the eye, the intense burning ray may cause scar tissues to form at the point of separation, reattaching the retina by fusing it to the underlying tissue. While today’s medical-grade optically pumped lasers used in ophthalmological applications are in the more popular cost-effective Lasik eye surgery. Optically pumped lasers are proof yet again that almost all of our high-tech tools are very dependent on rare earth metals in their construction and operation.
By: Ringo Bones
In the 1960s till now, optically pumped lasers produce higher outputs – in terms of both energy and peak power – than those in the discharge excited gas lasers or electron injection lasers or semiconductor lasers. Even as far back as 1964, optically pumped lasers were already capable of producing pulse energies of 2,000-joules and peak powers of 5-gigawatts or 5-billion watts. Optically pumped lasers are still the widely used type both in practical development and in laboratory research. In optically pumped lasers, the atoms in the laser material are indirectly excited by light from an intense light source – such as a xenon flash lamp – that is often coiled, snake-like, around the material. Like the other types of lasers, optically pumped lasers may either operate in a pulsed or continuous wave. A pulsed laser produces a burst of radiation that lasts about a thousandth – or in some cases, a few billionths – of a second. In a continuous-wave laser, the intensity achieved is much less, but the laser beam comes out in a continuous stream.
Although there are perhaps 20 or so optically pumped solid-state laser materials, like those calcium chloride crystals doped with samarium that can produce laser beams intense enough to burn metal or bounce off the Moon, 4 are the most dominant: ruby, neodymium doped glass, neodymium-doped calcium tungstate, and dysprosium-doped calcium fluoride. The ruby and glass lasers normally operate at room temperatures, and in the pulse mode. The neodymium-doped calcium tungstate and dysprosium-doped calcium fluoride can readily be operated to emit continuous waves; however, the dysprosium-doped calcium fluoride must be cooled to cryogenic temperatures about that of liquid air.
There is even a class of organic liquids, such as nitrobenzene, that exhibits simulated Raman emission when optically pumped by another laser. A plastic laser, developed in 1963, uses europium chelates dissolved in a clear plastic fiber as the lasing material to produce crimson pulses when excited by ultraviolet light. Lasers of this sort are also used as a light source in Raman spectroscopy – a spectroscopic technique of great value in organic chemistry based on an effect discovered by the Indian physicist Sir Chandrasekhara Venkata Raman – and has greatly facilitated studies in that field.
Ever since as far back as the 1960s, medical-grade optically pumped lasers were already used in eye surgery where it is used to treat retinal detachment especially if the retina – the light-sensitive tissue at the back of the eye tears loose from the eyeball – blindness may result. When a laser beam is focused through the lens of the eye, the intense burning ray may cause scar tissues to form at the point of separation, reattaching the retina by fusing it to the underlying tissue. While today’s medical-grade optically pumped lasers used in ophthalmological applications are in the more popular cost-effective Lasik eye surgery. Optically pumped lasers are proof yet again that almost all of our high-tech tools are very dependent on rare earth metals in their construction and operation.
Saturday, November 13, 2010
Urban Mining: Unseemly Source of Rare Earth Metals?
As the country hardest hit by Mainland China’s “Rare Earth Export Quota Reduction”, will Japan’s Urban Mining scheme become an unseemly source of rare earths?
By: Ringo Bones
Ever since that notorious incident back in September 7, 2010 where a Mainland Chinese trawler captain rammed his fishing trawler into a Japanese navy patrol ship in a disputed territory claimed by both countries, diplomatic tensions between Japan and the People’s Republic of China has since reached an all time high. Soon thereafter, the Beijing government decided to reduce its rare earth export quotas citing its own high tech industry’s growing need of the precious resource.
Unfortunately, given that the People’s Republic of China has a virtual monopoly – over 90% in fact – of the worlds commercial supply of rare earth metals, the move became a thinly-veiled excuse as an embargo on Beijing’s rare earth ore concentrate exports to Japan. As the country hardest hit by the People’s Republic of China’s “Rare Earth Export Quota Reduction”, will Japan eventually find another way to supply its domestic high tech manufacturing firms with rare earth metals?
For over two months now, not a single kilo of rare earth ore concentrate from the Chinese Mainland had arrived in Japanese shores, says Shigeo Nakamura of Advanced Material Japan Corporation, one of Japan’s main rare earth ore concentrate buyers from the People’s Republic of China. Because of this, Japan had resorted to “Urban Mining”, a scheme of extracting rare earths from e-wastes and other obsolete consumer electronic and computer gear.
According to Daisuke Takahashi of Highbridge Computers, his firm now makes a profit in urban mining rare earths from the tin but powerful magnets found in the read/write heads of obsolete computer hard disc drives. Even the phosphors of cathode ray tube type computer monitors – which are rich in rare earths – are already a prime source of the precious raw material in Japan.
Not only e-wastes are a prime rare earth source for urban mining, old electric typewriters, audiophile grade cassette tape decks and even a late 1990s era Sega Megadrive are now mined for rare earth metals in Japan. Even though urban mining might seem like an environmentally friendly way of extracting rare earth metals through recycling by preventing e-wastes and obsolete consumer electronic gear from winding up in landfills and endangering the local water table when rainwater leaches their poisonous by-products of breakdown, it can’t supply Japan and the rest of the world’s need for rare earths in mobile phone, laptop, hybrid car and wind turbine generator production – and future applications that could provide us with carbon neutral energy sources.
As a way of exploring ways on how Japan can weather the global rare earth shortage due to the People’s Republic of China’s strong-arm tactics in keeping geopolitical dominance through rare earth metals monopoly, Kazuhiko Hono of Japan’s National Institute for Material Science had recently been experimenting with lasers to explore the atomic structure of modern rare earth alloy permanent magnets used in hybrid car motors and wind turbine generators. The aim is to find ways of constructing newfangled permanent magnets that are as strong as their predecessors while using reduced amounts of rare earths. But the true long-term solution will be is to restart and develop the rare earth industries of much friendlier countries that previously supplied rare earth metals in the past that has been since superseded by Mainland China due to economic reasons. Like Canada, India, and (hopefully not a Republican run) the United States.
By: Ringo Bones
Ever since that notorious incident back in September 7, 2010 where a Mainland Chinese trawler captain rammed his fishing trawler into a Japanese navy patrol ship in a disputed territory claimed by both countries, diplomatic tensions between Japan and the People’s Republic of China has since reached an all time high. Soon thereafter, the Beijing government decided to reduce its rare earth export quotas citing its own high tech industry’s growing need of the precious resource.
Unfortunately, given that the People’s Republic of China has a virtual monopoly – over 90% in fact – of the worlds commercial supply of rare earth metals, the move became a thinly-veiled excuse as an embargo on Beijing’s rare earth ore concentrate exports to Japan. As the country hardest hit by the People’s Republic of China’s “Rare Earth Export Quota Reduction”, will Japan eventually find another way to supply its domestic high tech manufacturing firms with rare earth metals?
For over two months now, not a single kilo of rare earth ore concentrate from the Chinese Mainland had arrived in Japanese shores, says Shigeo Nakamura of Advanced Material Japan Corporation, one of Japan’s main rare earth ore concentrate buyers from the People’s Republic of China. Because of this, Japan had resorted to “Urban Mining”, a scheme of extracting rare earths from e-wastes and other obsolete consumer electronic and computer gear.
According to Daisuke Takahashi of Highbridge Computers, his firm now makes a profit in urban mining rare earths from the tin but powerful magnets found in the read/write heads of obsolete computer hard disc drives. Even the phosphors of cathode ray tube type computer monitors – which are rich in rare earths – are already a prime source of the precious raw material in Japan.
Not only e-wastes are a prime rare earth source for urban mining, old electric typewriters, audiophile grade cassette tape decks and even a late 1990s era Sega Megadrive are now mined for rare earth metals in Japan. Even though urban mining might seem like an environmentally friendly way of extracting rare earth metals through recycling by preventing e-wastes and obsolete consumer electronic gear from winding up in landfills and endangering the local water table when rainwater leaches their poisonous by-products of breakdown, it can’t supply Japan and the rest of the world’s need for rare earths in mobile phone, laptop, hybrid car and wind turbine generator production – and future applications that could provide us with carbon neutral energy sources.
As a way of exploring ways on how Japan can weather the global rare earth shortage due to the People’s Republic of China’s strong-arm tactics in keeping geopolitical dominance through rare earth metals monopoly, Kazuhiko Hono of Japan’s National Institute for Material Science had recently been experimenting with lasers to explore the atomic structure of modern rare earth alloy permanent magnets used in hybrid car motors and wind turbine generators. The aim is to find ways of constructing newfangled permanent magnets that are as strong as their predecessors while using reduced amounts of rare earths. But the true long-term solution will be is to restart and develop the rare earth industries of much friendlier countries that previously supplied rare earth metals in the past that has been since superseded by Mainland China due to economic reasons. Like Canada, India, and (hopefully not a Republican run) the United States.
Monday, November 8, 2010
Rare Earth Metals Mining and Processing: Like Wringing Blood form Stone?
Given the technical challenges faced by start up rare earth metals miners and producers even since Mainland China lowered the quota they want to sell to the world market, is getting rare earths from the ground really like wringing blood from stone?
By: Ringo Bones
When the People’s Republic of China decided to lower the quota of rare earth metals that it sells to the world market in order to bolster their own strategic reserves back in October 21, 2010 commodities traders’ around the world got slightly panicky that this might affect the consumer electronics, hybrid car and wind turbine generator industry. Such is the usefulness of rare earth metals in our contemporary 21st Century society that the lone commercial producer of rare earth metals now has gained tremendous geopolitical clout. Given the difficulty of new and former rare earth producers to start their own rare earth metal industry, is it really that difficult to extract the valuable commodity from the ground that it is compared to “wringing blood from stone”?
The rare earth elements, though not exactly abundant, are not at all rare; they are in fact widely distributed in nature. In actuality, the term “rare” is more descriptive of these elements’ “unusual” properties than of their relative abundance on our planet. The order of magnitude of abundance ranges from lutetium at 0.7 parts per million of the Earth’s crust to 44 parts per million for cerium. Distribution wise, even our seas contains 1.8 long tons of cerium and 1.4 long tons of lanthanum per cubic mile of seawater. Unfortunately at this concentrations, it is too diluted a form to be extracted in an economically viable manner using present technology.
Commercially viable rare earth minerals like monazite, samarskite and even uranite are widely distributed across the Earth’s surface, but mining and processing rare earth metals in a commercially viable manner into their commercially viable forms for the world’s commodities markets is another thing entirely. Samarskite was used to be extensively mined in the continental United States, but since 1990, it can no longer be done in a commercially viable manner due to wage, miner safety and environmental concerns.
From the Periodic Table’s perspective, the rare earths are conveniently grouped according to the solubility behavior of their sulfates or by the slight differences of their basic strength. Their similarities in electron configuration suggested similarities in chemical behavior. The trivalent ions are especially similar in forming salts of nearly identical solubilities, hydroxide strength, and complexing tendency. The latter property and small differences do provide a method of separation.
Rare earth metal manufacturing could be considered a relatively young branch of metallurgy. Until the middle of the 1940s, chemical separation of one rare earth element from another was achieved only by the most tedious means of fractional crystallization of the double sulfates, oxalates, and nitrates. The very slight differences in salt grain size from one rare earth element to another provides very slight differences in solubilities of such compounds. Literally thousands of individual manual operations were required even for crude separations. The need for and interest in the individual members of the rare earth series of elements led to more efficient means of separation. Separation of rare earth ions from each other is currently achieved most economically and in the highest purity by either ion-exchange or solvent-extraction procedures.
Unlike that of the chemical separation and processing of the platinum group of metals which remained a proprietary industrial / commercial / corporate secret, the post World War II scientific interest in are earth metals had made the laboratory separation of them an open knowledge by virtue of academic freedom and a widely-distributed academic pursuit. The knowledge of efficiently separating rare earth metals from their ores and from each other eventually reached the People’s Republic of China.
Slave wages, very lax mining safety, environmental and miner’s health concerns had eventually made Mainland China the sole commercially viable provider of rare earth metals for the world’s commodities markets. The ridiculously low prices are conveniently passed on to their miners, which doesn’t say much about where the Mainland Chinese rare earth metal industry stands when it comes to corporate social responsibility. Mining rare earth metals and processing their ores is indeed like wringing blood from stone in more ways than one.
By: Ringo Bones
When the People’s Republic of China decided to lower the quota of rare earth metals that it sells to the world market in order to bolster their own strategic reserves back in October 21, 2010 commodities traders’ around the world got slightly panicky that this might affect the consumer electronics, hybrid car and wind turbine generator industry. Such is the usefulness of rare earth metals in our contemporary 21st Century society that the lone commercial producer of rare earth metals now has gained tremendous geopolitical clout. Given the difficulty of new and former rare earth producers to start their own rare earth metal industry, is it really that difficult to extract the valuable commodity from the ground that it is compared to “wringing blood from stone”?
The rare earth elements, though not exactly abundant, are not at all rare; they are in fact widely distributed in nature. In actuality, the term “rare” is more descriptive of these elements’ “unusual” properties than of their relative abundance on our planet. The order of magnitude of abundance ranges from lutetium at 0.7 parts per million of the Earth’s crust to 44 parts per million for cerium. Distribution wise, even our seas contains 1.8 long tons of cerium and 1.4 long tons of lanthanum per cubic mile of seawater. Unfortunately at this concentrations, it is too diluted a form to be extracted in an economically viable manner using present technology.
Commercially viable rare earth minerals like monazite, samarskite and even uranite are widely distributed across the Earth’s surface, but mining and processing rare earth metals in a commercially viable manner into their commercially viable forms for the world’s commodities markets is another thing entirely. Samarskite was used to be extensively mined in the continental United States, but since 1990, it can no longer be done in a commercially viable manner due to wage, miner safety and environmental concerns.
From the Periodic Table’s perspective, the rare earths are conveniently grouped according to the solubility behavior of their sulfates or by the slight differences of their basic strength. Their similarities in electron configuration suggested similarities in chemical behavior. The trivalent ions are especially similar in forming salts of nearly identical solubilities, hydroxide strength, and complexing tendency. The latter property and small differences do provide a method of separation.
Rare earth metal manufacturing could be considered a relatively young branch of metallurgy. Until the middle of the 1940s, chemical separation of one rare earth element from another was achieved only by the most tedious means of fractional crystallization of the double sulfates, oxalates, and nitrates. The very slight differences in salt grain size from one rare earth element to another provides very slight differences in solubilities of such compounds. Literally thousands of individual manual operations were required even for crude separations. The need for and interest in the individual members of the rare earth series of elements led to more efficient means of separation. Separation of rare earth ions from each other is currently achieved most economically and in the highest purity by either ion-exchange or solvent-extraction procedures.
Unlike that of the chemical separation and processing of the platinum group of metals which remained a proprietary industrial / commercial / corporate secret, the post World War II scientific interest in are earth metals had made the laboratory separation of them an open knowledge by virtue of academic freedom and a widely-distributed academic pursuit. The knowledge of efficiently separating rare earth metals from their ores and from each other eventually reached the People’s Republic of China.
Slave wages, very lax mining safety, environmental and miner’s health concerns had eventually made Mainland China the sole commercially viable provider of rare earth metals for the world’s commodities markets. The ridiculously low prices are conveniently passed on to their miners, which doesn’t say much about where the Mainland Chinese rare earth metal industry stands when it comes to corporate social responsibility. Mining rare earth metals and processing their ores is indeed like wringing blood from stone in more ways than one.
Wednesday, November 3, 2010
Rare Earth Metals: The Periodic Table’s Undiscovered Country?
Recently gained press attention when the People’s Republic of China planned to reduce its export quota of rare earths back in October 21, 2010, are rare earth metals the periodic table’s “Undiscovered Country”?
By: Ringo Bones
As the only commercial producer of rare earth metals, the global economy got a bit spooked when the Beijing government decided to reduce its export of the valuable metals for its own domestic high tech use back in October 21, 2010. The hybrid car industry and the consumer electronics industry cannot function without rare earth metals, and yet an overwhelming number of us only had passive acquaintance of this quaint group of elements back in high-school chemistry. Does this mean that the rare earth metals or lanthanide metals truly are the periodic table’s “Undiscovered Country”?
Even though it is currently on the commodities traders hotspot du jour, from the perspective of the International Union of Pure and Applied Chemistry or IUPAC, the group of elements commonly referred to as the “rare earths” are neither rare nor earths. The rare earth family or group of elements are composed of soft, malleable metals – and most of them are not at all in short supply. Cerium, the most abundant, is more plentiful than tin or lead – while thulium, the scarcest, is only slightly rarer than iodine. The rare earth misnomer came about because these elements’ oxides not only have earth-like consistency and texture but where at first mistaken for the elements themselves.
All of the 15 rare earth elements have two outer electrons and eight or nine in the second shell in. They only vary in their electron compliment in the third innermost shell. But among the rare earth’s atomic structure, the third-shell electron difference is very slight indeed thus making the 15 elements a very close-knit family. From a mineralogical standpoint, a typical mineral containing a single rare earth element more often than not contains all of the other members.
The rare earth elements are so nearly identical in their chemical properties that separating them can easily involve thousands of steps. Because of this quirk of chemistry, the individual chemically pure rare earth elements did not became available in commercial quantities until the late 1950s – which only added to the group’s reputation as the “Undiscovered Country” of the periodic table of elements.
Nevertheless, the rare earth family in their less than chemically pure form has been used industrially since the early 1900s in the form of their naturally occurring mineralogical mixture. Later on, much purer and refined forms go into the making of powerful ceramic rare earth magnets like the samarium cobalt magnets used in the electric motors of hybrid cars.
For much of the 20th Century, more than a million pounds of low purity rare earth metals still go annually into the manufacture of an alloy called “misch metal” – German for mixed metal. Combined with iron, misch metal products are used in cigarette-lighter flints. But the main use of low purity rare earth metals is in iron and steel-making where it is used to absorb impurities and improve the steel’s texture and workability.
A mixture of rare earths combined with carbon produces the intense carbon arc lights once used to light up Hollywood before being superseded by more energy efficient light sources. And a large number of rare earth compounds go into the making of high-quality glass for computer monitor use by making the glass completely colorless. Or in other applications, by adding deep color depending on the combination used.
Even though the United States has more or less similar amounts of rare earth metals deposits as that of the People’s Republic of China, it has since closed down its mines and related purification facilities back in 1990 due to the fact that it can no longer produce rare earth metals in a way that’s economically competitive with Mainland China while still adhering to OSHA and EPA guidelines and American mine workers – unlike that of Mainland China – won’t work under slave wage conditions; Thus enabling Mainland China as of late to use its rare earth metals industry as geopolitical leverage.
By: Ringo Bones
As the only commercial producer of rare earth metals, the global economy got a bit spooked when the Beijing government decided to reduce its export of the valuable metals for its own domestic high tech use back in October 21, 2010. The hybrid car industry and the consumer electronics industry cannot function without rare earth metals, and yet an overwhelming number of us only had passive acquaintance of this quaint group of elements back in high-school chemistry. Does this mean that the rare earth metals or lanthanide metals truly are the periodic table’s “Undiscovered Country”?
Even though it is currently on the commodities traders hotspot du jour, from the perspective of the International Union of Pure and Applied Chemistry or IUPAC, the group of elements commonly referred to as the “rare earths” are neither rare nor earths. The rare earth family or group of elements are composed of soft, malleable metals – and most of them are not at all in short supply. Cerium, the most abundant, is more plentiful than tin or lead – while thulium, the scarcest, is only slightly rarer than iodine. The rare earth misnomer came about because these elements’ oxides not only have earth-like consistency and texture but where at first mistaken for the elements themselves.
All of the 15 rare earth elements have two outer electrons and eight or nine in the second shell in. They only vary in their electron compliment in the third innermost shell. But among the rare earth’s atomic structure, the third-shell electron difference is very slight indeed thus making the 15 elements a very close-knit family. From a mineralogical standpoint, a typical mineral containing a single rare earth element more often than not contains all of the other members.
The rare earth elements are so nearly identical in their chemical properties that separating them can easily involve thousands of steps. Because of this quirk of chemistry, the individual chemically pure rare earth elements did not became available in commercial quantities until the late 1950s – which only added to the group’s reputation as the “Undiscovered Country” of the periodic table of elements.
Nevertheless, the rare earth family in their less than chemically pure form has been used industrially since the early 1900s in the form of their naturally occurring mineralogical mixture. Later on, much purer and refined forms go into the making of powerful ceramic rare earth magnets like the samarium cobalt magnets used in the electric motors of hybrid cars.
For much of the 20th Century, more than a million pounds of low purity rare earth metals still go annually into the manufacture of an alloy called “misch metal” – German for mixed metal. Combined with iron, misch metal products are used in cigarette-lighter flints. But the main use of low purity rare earth metals is in iron and steel-making where it is used to absorb impurities and improve the steel’s texture and workability.
A mixture of rare earths combined with carbon produces the intense carbon arc lights once used to light up Hollywood before being superseded by more energy efficient light sources. And a large number of rare earth compounds go into the making of high-quality glass for computer monitor use by making the glass completely colorless. Or in other applications, by adding deep color depending on the combination used.
Even though the United States has more or less similar amounts of rare earth metals deposits as that of the People’s Republic of China, it has since closed down its mines and related purification facilities back in 1990 due to the fact that it can no longer produce rare earth metals in a way that’s economically competitive with Mainland China while still adhering to OSHA and EPA guidelines and American mine workers – unlike that of Mainland China – won’t work under slave wage conditions; Thus enabling Mainland China as of late to use its rare earth metals industry as geopolitical leverage.
Subscribe to:
Posts (Atom)