Given that it is the rarest of the rare earth metals, is
thulium more famous for its portable X-ray related use than any of its rather
relatively “obscure” applications?
By: Ringo Bones
Even though in terms of its abundance in the Earth’s crust,
thulium does truly qualify as the rarest of the rare earth metals, although in
truth, it is only slightly scarcer than the halogen iodine. As a reminder to
the uninitiated, the term “rare earth” is actually a misnomer – the widespread
use of the term arose near the end of the 19th Century when the
chemists who first discovered these rare earth elements used to prepare the elements’
oxides, which were, at first, taken from the elements themselves. Thulium was
discovered as a distinct chemical element back in 1879 by Per Theodore Cleve.
Atomic number 69 and chemical symbol Tm, its name is derived from Thule or
Northland. For the first half of the 20th Century, thulium was only
known as mere “impurity” in your run-of-the-mill misch metal alloys destined
for pocket cigarette-lighter flint production.
Thulium became more well-known to the unsuspecting public
when in 1954, a portable X-ray unit was developed which employs radioactive
thulium as its source of radiation – produced by irradiating a pure sample of the
metal inside a nuclear reactor. Like those small nuclear reactors often found
in some Ivy League university physics labs that costs 200 US dollars an hour to
run. A small amount – usually button-sized specimen - of this thulium radioisotope
that gives off X-rays is encased in a lead-lined compartment which affords full
protection to personnel involved in its operation, produces X-ray radiographs
without the use of electricity, water or darkroom facilities. The unit, which
weighs only 40 pounds, is simple to operate and produces a finished radiograph
ready for inspection in five to ten minutes. The “hot” thulium radioisotope used
in portable X-ray machines is replaced every few months or so since it
spontaneously decays into a more stable element that no longer gives off
X-rays.
So portable X-ray machines that use radioactive thulium-170 were invented in 1954. So that WWII movie that I saw a few years ago when an American GI was carrying a portable X-ray machine was probably historically inaccurate. Anyway, the thulium-170 used in portable X-ray machines have a 128-day half-life and emits "soft gamma rays" at 0.084 million electron volts that closely resembles X-rays.
ReplyDeleteDue to its emission of "soft" beta rays, can strontium-90 be used as a substitute for thulium-170 in portable X-ray machines?
ReplyDeleteThulium-171 is also useful as a potential energy source.
ReplyDelete